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Abstract

Reinforcement learning has typically focused on training agents to solve complex
games. Finding novel tasks to bridge the gap between theoretical and physical ap-
plications is an important pursuit. To this end, this paper explores the application
of reinforcement learning to a simulated task involving the control of base-stations
mounted on unmanned aerial vehicles (UAVs). The task is motivated by the real prob-
lem of providing network coverage after disaster scenarios. Intelligent control of the
UAV base stations is required to achieve reliable network coverage for the users on the
ground. Comparing actor-critic and off-policy deep Q-learning approaches, all algo-
rithms consistently outperform a heuristic benchmark. The deep Q-learning approach
outperforms the actor-critic methods and achieves a median SINR increase of 9 dB
compared to the baseline.
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Chapter 1

Introduction

With the rise in availability and affordability of drones, or “unmanned aerial vehi-
cles” (UAVs), many applications for these devices have been established ranging from
photography (L1 and Yang, 2012) to package delivery (Anbaroglu, 2017). An impor-
tant application of UAVs, stemming from their high mobility, is their usage in disaster
scenarios. In this context, UAVs can serve as mobile base stations providing wire-
less connectivity, and consequently a method of communication, to victims and first
responders after a disaster.

The focus of this paper is the application of reinforcement learning algorithms on a
simulated domain where UAV's aim to provide network coverage to mobile users. Re-
inforcement learning has traditionally been applied to solve games. Algorithms have
been shown to achieve super-human performance on a number of tasks ranging in com-
plexity from Backgammon to Go (Tesauro, 1995) (Silver et al.,2017). The application
of reinforcement learning algorithms to real-world problems is less popular, as the as-
sumptions made by these algorithms do not often hold in real-world settings. Efforts to
bridge the gap between toy simulations and physical applications are therefore impor-
tant for progress in the area. The simulated environment, developed by L1 et al.|(2019),
consists of a number of UAV base stations which provide network coverage to users
“on-the-ground”. The users move around according to a motion model which aims to
replicate the behaviour of users in disaster scenarios. The actions taken by the base
stations constitute the learned control policy of a reinforcement learning algorithm,
and can be optimized through a number of approaches.

In L1 et al. (2019) an actor-critic reinforcement learning approach was used to learn
the control policy. They chose the asynchronous advantage actor-critic (A3C) algo-
rithm (Mnih et al.| 2016) due to its low memory and hardware costs: it can train on a
single CPU rather than multiple GPUs. A3C showed superiority to a greedy baseline
achieving a median SINR increase of 5 dB. In disaster scenarios, the ability to achieve
reliable network connections for those affected is key and any increase in the signal
quality could improve these connections (Tiefenbacher, 2019). To this end, this paper
implements a number of improvements to the learning algorithm specifically, updating
its implementation to a new machine learning framework and removing asynchronous
updates — this approach is called advantage actor critic (A2C). These variations have
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8 Chapter 1. Introduction

been shown to outperform the standard A3C algorithm (Dhariwal et al., 2017). Ad-
ditionally an off-policy learning algorithm, asynchronous deep Q-learning (ADQN)
(Mnih et al., [2016), has been implemented as another baseline to evaluate against the
on-policy actor-critic methods.

It is important to identify any properties of the environment that can have an impact on
the complexity of the reinforcement learning problem. As both UAV base stations and
users change the state of the environment through their actions, and the reinforcement
learning algorithm controls only the actions of the base stations, the task should be un-
derstood as a multi-agent problem. Many reinforcement learning algorithms, including
those used in this paper, have convergence properties that depend on core assumptions.
Multi-agent problems can conflict with these assumptions leading to difficulties in the
learning process. The assumptions and the problems that occur when they are bro-
ken will be explained in Chapter [3] Re-framing this domain as a multi-agent problem
and identifying the difficulties associated with this will hopefully encourage diligence
when applying reinforcement learning algorithms to similar environments.

The implementations of all algorithms investigated in this paper have been open-
sourced as a reference to facilitate further research, and interest, in deep reinforce-
ment learning. The code has been written in Python 3, using a cutting-edge version of
Google’s popular machine learning framework, Tensorflow (Abadi et al., 2015)). The
updated framework, Tensorflow 2, offers a functional API which greatly increases the
readability and structure of machine learning implementations compared to its older,
declarative API. The reference implementations interface directly with OpenAl’s gym
framework: a common interface into a number of reinforcement learning environ-
ments, ranging from toy problems to complex continuous control tasks (Brockman
et al., 2016).

The achievements of this paper are as follows:
e Implemented A3C, A2C and ADQN algorithms.
e Open-sourced reference implementations for the above algorithms.

e Identified the multi-agent properties of the environment. Presented complica-
tions that this can cause on learning performance.

e Evaluated the performance of the algorithms on the UAV domain.

All the code written for the paper can be found at the following link:
https://github.com/SamKnightGit /DRL_UAV_CellularNet/tree/py3


https://github.com/SamKnightGit/DRL_UAV_CellularNet/tree/py3

Chapter 2

Related Work

2.1 Reinforcement Learning

Reinforcement learning can broadly be categorized into two approaches: policy op-
timization and value optimization. Policy optimization involves directly updating the
policy using a quantifiable measure of the policy’s utility while value optimization
involves learning the value of states in the environment and taking actions to maxi-
mize this value. Policy gradient approaches — policy optimization using the gradient
of rewards with respect to policy parameters — were heavily popularized in Sutton
et al. (1999). The paper proved that policy optimization, given appropriate function
approximation, will converge to a locally optimum policy. |Sutton et al.| (1999) also
laid the groundwork for modern actor-critic algorithms suggesting that the policy can
be represented by a function approximator, specifically a neural network with outputs
representing action probabilities.

Modern policy gradient methods include Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) and Proximal Policy Optimization (PPO) (Schulman et al.,
2017). TRPO presents a surrogate objective function which, when minimized, can
guarantee monotonic policy improvement. Schulman et al. (2015) demonstrate that
TRPO performs well on a variety of simulated tasks without the need for hyper-
parameter optimization. Schulman et al.| (2017) introduce a simpler policy gradient
method, PPO, which aims to capture the benefits of TRPO while achieving better sam-
ple complexity. PPO uses a clipped surrogate objective function which punishes large,
potentially disruptive, policy updates to promote convergence. PPO achieves better
performance than TRPO and a number of other policy gradient algorithms on many
continuous control environments while requiring lower training times.

Deep reinforcement learning has risen in popularity since Deepmind’s paper on Deep
Q Networks (DQN) (Mnih et al., 2013). Implementing a reinforcement learning frame-
work which utilized deep neural networks, they achieved state-of-the-art performance
on many virtual Atari tasks using raw pixels as inputs. To stabilize learning by reduc-
ing the correlation of updates, [Mnih et al.| (2013) used an experience replay buffer to
sample experiences randomly during training. Another method of decorrelation was
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10 Chapter 2. Related Work

proposed in Mnih et al. (2016)): using a number of asynchronous learning agents in
parallel environments. This approach avoided the limitations of experience replay,
namely high memory cost and the requirement of off-policy learning algorithms. This
paper also introduced the asynchronous advantage actor-critic (A3C) algorithm, which
utilized an actor-critic architecture to train agents with asynchronous updates.

The actor-critic architecture has been utilized in many modern deep reinforcement
learning, policy gradient approaches. Wang et al.| (2016) combines actor-critic deep
reinforcement learning with the aforementioned experience replay, introducing actor-
critic with experience replay (ACER). Experience replay is added to reduce the high
sample complexity of actor-critic methods and is shown to outperform A3C in terms of
task completion and sample efficiency on both discrete and continuous environments
(Wang et al., 2016). Haarnoja et al.| (2018)) propose using an off-policy actor-critic
algorithm which uses a maximum entropy approach, pushing the learning agent to
achieve high performance while acting as randomly as possible. This method achieves
state-of-the-art performance on a number of continuous control benchmarks as well as
achieving high stability across different environments. Finally,|Gu et al.|(2016)) address
the high sample complexity of deep reinforcement learning approaches by proposing
Q-Prop, an algorithm which combines the benefits of on-policy and off-policy meth-
ods. Using an off-policy critic, Q-Prop reduces the variance inherent in policy-gradient
approaches, lowering sample complexity. Empirically, Q-Prop demonstrates increased
sample efficiency and stability compared to TRPO and Deep Deterministic Policy Gra-
dient (DDPG) (Lillicrap et al., 2016)), a policy gradient algorithm, in a number of con-
tinuous control tasks respectively.

2.2 UAV Control

Autonomous unmanned aerial vehicles (UAV) navigation and control has become a
popular research area with the rise in availability of commodity UAVs. Pham et al.
(2018) applied reinforcement learning to a physical UAV navigation task in an un-
known environment. They propose a variant of the Q-learning algorithm (Watkins and
Dayan), 1992)), which incorporates the use of a PID controller for executing the actions
output by the learning agent. Koch et al.| (2018)) note that PID controllers do not per-
form optimally in unpredictable environments and investigate the use of modern rein-
forcement learning algorithms in a custom simulated environment. Implementing and
evaluating PPO, TRPO and DDPG on a continuous control task, the paper concludes
that while TRPO and DDPG suffer from unstable oscillations, PPO outperforms the
PID controller (Koch et al., [2018]).

Deep reinforcement learning approaches have also been applied to the UAV control
task. Huang et al.| (2019) consider UAVs acting as wireless base stations and train a
DQN for optimizing UAV navigation. Taking inputs from a massive multiple input
multiple output (MIMO) the DQN outperforms several benchmark control strategies.
L1 et al. (2017) combine the policy-gradient DDPG algorithm with a PID controller
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to train a control policy for following a target. To balance the inherent instability of
the RL algorithm on a real-world environment they propose a novel architecture: the
policy network outputs high level actions which are mapped to low-level UAV com-
mands by the PID controller (L1 et al., 2017)). Additionally, to reduce instability in the
learning process, supervised pre-training of the convolutional neural network layers
used for perception is implemented. A comparison of pre-trained vs non pre-trained
approaches shows that this bootstrapping of the policy network leads to faster and more
stable convergence.

This work expands on the research done by |L1 et al.| (2019) in which they implement
the A3C algorithm to train a UAV control policy in a simulated environment. |L1 et al.
(2019) report that the reinforcement learning approach exceeds the performance of a
greedy benchmark. The performance of the algorithms is quantified using a cumulative
distribution function of the SINR attained by all users. The A3C approach is reported
to achieve a 5dB higher median SINR than the benchmark.

This dissertation aims to address two main limitations of the research done by |L1 et al.
(2019): that only a single learning algorithm was explored and that the paper does
not explicitly address the multi-agent aspects of the environment in relation to learn-
ing. The performance of different types of learning algorithms on unique domains
can elucidate aspects of the algorithms and the environment that were not previously
considered (Hausknecht and Stonel, 2016). To this end, A2C and ADQN algorithms
are implemented to explore the performance differences of off-policy and on-policy
algorithms on the domain. Additionally, the multi agent aspects of the environment
are explicitly addressed and the consequences these have on convergence guarantees
are explained.






Chapter 3

Reinforcement Learning Primer

Reinforcement learning (RL) is the pursuit of optimal behaviour through interaction
with an environment. Typically, an agent or autonomous learner will receive feedback
for its action in the form of a “reward” which guides the agent towards a goal. At each
moment in time (a time-step), the agent perceives the state of the environment, receives
a reward for the previous action it took and issues an action for the current time-step.
States, actions and rewards are often stochastic quantities, complicating the learning
process. The RL problem is commonly formulated as a finite Markov decision process
(MDP) which can be fundamentally described by the following property:

Given the current state (s) and action (a) the probability of the next state (s”) and its
associated reward (r) is conditionally independent of all previous states and actions:
p(s',r|s,a) =p(s;o1 =5, ri1=r|s; =s,a,=a) (3.1)

Where ¢ represents the time-step.

An MDP typically consists of the 4-tuple < §, 4, R, P >:
e S is the set of states of the environment
e A1 is the set of actions the agent can take

e R is the reward function, outputting the reward for taking action a in state s.
R(s,a) =E[ri1]s; = 5,0 = d

e P is the transition function, outputting the probability of transitioning from state
s to s’ when taking action a. P(s,a,s’) = Plsiy1|sr = s,a; = d]

In many environments, including the UAV environment investigated in this paper, ac-
tions are deterministic meaning that the transition function is trivial: for a given state-
action pair, the function will always map to the same next state with a probability of 1.

The formulation of RL problems into an MDP provides a framework for evaluating
the convergence guarantees of various algorithms. In many environments, especially
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14 Chapter 3. Reinforcement Learning Primer

ones involving multiple agents, the fundamental Markov assumption is broken (Lau-
rent et al., 2011). In the UAV environment, the state space represents the locations of
the base stations and users. However, as the agent only controls the actions of the base
stations (and knows nothing about the mobility model of the users) the Markov as-
sumption is broken: for a given state-action pair, the next state could differ depending
on the current configuration of the users’ mobility model. This assumption breaking,
while important to keep in mind when investigating learning and convergence in multi-
agent environments, does not prevent learning on the domain. To the contrary, many
reinforcement learning algorithms which break the Markov assumption have success-
fully solved tasks ranging in complexity from block-pushing (Sen et al., [1994) to ele-
vator control (Crites and Barto), [1995)).

Behaving optimally, from a RL perspective, can be achieved by maximizing the ex-
pected sum of future rewards. In order to do this an agent must learn to quantify the
expected rewards of states and actions and take actions to maximize this. An agent’s
policy, T represents a probability distribution over actions given states, and fully de-
scribes its behaviour in the environment. The two main types of approaches for maxi-
mizing future rewards are value based and policy based methods.

3.1 Value and Policy Based Methods

Value based reinforcement learning relies heavily on the notion of a Q-Value or Action-
Value. The Q-Value function, Q(s,a), gives a measure of the expected reward for
taking action a, in state s and following the policy 7 thereafter. Typically the Q-Value
function is represented as a neural network with parameters 6. By exploring the envi-
ronment and receiving rewards the network aims to converge to the optimal Q-Value
function. The network “learns” by minimizing a loss which captures the distance be-
tween the current Q-Value estimate and an approximation of the optimal estimate. A
value based reinforcement learning agent formulates a policy which selects the action
with the highest Q-Value in a given state, referred to as the greedy policy. The inability
of the agent to learn a stochastic policy is one of the main downsides of pure value
based learning.

Policy based reinforcement learning aims to maximize expected rewards by directly
optimizing the agent’s policy, . Similar to value based methods a function approxi-
mator such as a neural network with parameters 0 is often used to represent the policy.
To update the policy towards optimal behaviour, a function must be used to quantify
and compare the performance of various policies. [Sutton et al. (1999) propose an ex-
ample policy update using: 5
~aP
AB =~ o 50 (3.2)

Where o is a step-size parameter and p a policy performance measure

Contrary to value based learning, one of the main advantages to policy based learn-
ing is the resulting stochastic policy. A stochastic policy allows an agent to perform
optimally in environments where stochastic actions are required as well as those in
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which deterministic actions are optimal. To understand why the latter case is true, con-
sider an environment where an agent can take one of two actions: move up or move
down. If the agent is rewarded for moving up, a successful policy can be represented
deterministically, always move up, as well as stochastically, move up with probability
0.999 repeating.

Actor-critic methods combine value based and policy based approaches into a unique
framework. The actor represents the policy of the agent while the critic represents the
learned value function. The critic is updated as described in the section above, while
the actor utilizes the critics value estimate to scale its policy update. Modern actor-
critic approaches employ a neural network function approximator to parameterize the
actor and the critic. Practically, as is suggested by Mnih et al.| (2016)), it is common to
use a shared network with two separate output layers, for the policy and value respec-
tively.

3.2 Deep Reinforcement Learning

Deep reinforcement learning is the usage of deep neural networks in a reinforcement
learning problem. Deep RL was first popularized by Mnih et al.| (2013)) where a con-
volutional neural network (CNN) was used to approximate the Q-Value function for a
number of atari games. In the DQN algorithm, the network receives state inputs and
outputs the Q-Value of each possible action from the current state, see Figure The
depth of the network allows it to capture non-linearity, finding subtleties in the input
that have an impact on the resulting Q-values.

H_J

Input State

Output Q Values

v

Hidden Layers

Figure 3.1: An example deep Q network modelled in multi-layer perceptron style. Out-
puts are Q Values for each possible action given the current state as input.

One of the primary issues faced by neural networks in the context of RL is that they
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cannot decorrelate inputs. This manifests as a problem when training on an environ-
ment where varied sequential actions are required to accomplish a goal. The neural
network is repeatedly updating its parameters as it trains in the environment. The most
recent experiences therefore bias the parameters the most. We can highlight this prob-
lem by considering a simple environment where an agent must move up in the first
time-step and then right in the following five time-steps to reach the goal. Having
reached the goal, the network will be heavily biased towards moving right due to its
recent experiences and upon resetting the environment will likely try to move right in
the initial state even though this is sub-optimal.

Mnih et al. (2013) handle this by using a replay buffer, a memory of state, action,
reward tuples which are sampled from randomly to train the network. This allows
decorrelation of inputs at an increased memory cost. Another method for decorrelat-
ing inputs is with an asynchronous approach, as proposed by Mnih et al.| (2016). By
instantiating a number of parallel environments, where agents update a shared global
network asynchronously, the network receives a more generalized set of inputs to train
on. Asynchronous methods avoid the memory and computational burden of traditional
DQN approaches and can be trained on commodity CPUs (Mnih et al., [2016).

3.3 Algorithms

All the algorithms explored in this paper utilize deep reinforcement learning. However,
the architecture of the neural networks and the way the networks are optimized differ
across the algorithms. A3C and ADQN follow an asynchronous approach, while A2C
is synchronous. The general structure of these two approaches is laid out in Figure
and Figure 3.3[respectively. The full pseudocode for each algorithm is provided in

appendix

3.3.1 A3C

A3C stands for asynchronous advantage actor-critic. It is an actor-critic approach
which uses a number of workers exploring the environment in parallel (asynchronously)
to learn. As shown in each asynchronous worker holds its own local copy of the
actor and critic network and the environment. The workers take actions dictated by
their actor networks and calculate policy gradients based on the values provided by the
critic.

The policy gradients in A3C are scaled by an estimation of the value of each state
(Mnih et al., 2016). The quantity used for this scaling is called the advantage and is
calculated as follows:

A(at,st) = Q(at,st) —V(St) (33)

The advantage measure represents the increased benefit of taking the action a from the
state s compared to the average value from that state. Using the advantage rather than
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the raw value produced by the critic reduces the variance of the estimated return, while
keeping the estimate unbiased (Mnih et al., [ 2016)).

After a set number of time-steps the local workers send their gradients to the global
network for updating. After the global network has updated its weights based on the
local gradients, its weights are copied to the local network of the worker. This ensures
that after updating, a worker has the most up-to-date copy of the global network, and
implicitly the cumulative information of all other workers up to that point. One impor-
tant bi-product of the asynchronous updates is that one worker’s update can overwrite
the work done by another (Mnih et al.,[2016). However, given each agent is exploring
its own copy of the environment, and will therefore likely be experiencing different
states, overwriting updates seldom occur.

3.3.2 A2C

A2C, advantage actor-critic, is the synchronous variant of A3C. One of the key down-
sides of A3C is that the local networks across the workers often hold out-of-date, or
stale, weights. Stale weights occur as the workers only update their local networks
periodically and therefore only get access to the information from other workers at this
time. A2C, as visualised in Figure [3.3] uses a single coordinator which holds multiple
copies of the environment. At each time-step it takes actions across all the environ-
ments and updates the global network based on the resulting gradients. Thus, a diverse
range of experiences is still available during learning. Additionally, as the coordinator
holds the global network, the network always acts with the most up-to-date weights
possible.

3.3.3 ADQN

Asynchronous deep Q network (ADQN) implement a variant of the classic DQN ap-
proach that first popularized deep reinforcement learning (Mnih et al., [2013). On an
architectural level the ADQN algorithm functions identically to A3C, with parallel
workers updating a global network asynchronously. However, ADQN differs by using
a single neural network to approximate the Q function. Instead of a critic which pro-
vides information on how the policy should be updated, ADQN uses a target network.
The ADQN target network is used to calculate the main network’s loss by acting as a
predictor of the “true” Q value at any given state (Mnih et al., 2016).

In order to calculate the target Q-Value the following canonical formula is used:
erget =TIt+1 +Y X mc?-XQ(st+lva; etarget) (34)

Here 7y represents a discount factor and 6 parameterizes a neural network.
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However, Hasselt et al. (2015) proved both theoretically and empirically that the canon-
ical formula is prone to overestimation of Q-values. This is due to the maximum oper-
ator which uses the same value for evaluation and selection of an action. They propose
an alternative method which selects actions using the value from the main network and
evaluates the action using the value from the target network. This manifests in the
following update formula:

Qtarget =r1 7YX Q(St—‘rl»argmaXQ(st—i-l ’a;emain);etarget) 3.5
a

Q-learning following the update rule described in Equation was coined Double
Q-learning by Hasselt et al.| (2015). This Double Q-learning update was used in the
ADQN algorithm due to its demonstrated performance benefits compared to the origi-
nal Q-learning update (Hasselt et al.,[2015).

Global
Network
Update
Global

Update
Global

Copy
Weights

Copy
Weights

Worker 1 Worker 2
Local Store Local Local Store Local
Network Gradients Network Gradients

Act Result Act Result

h 4 ¥

{ Environment { Environment >

Figure 3.2: The asynchronous architecture used by A3C and ADQN algorithms assum-
ing two asynchronous workers. The architecture functions with an arbitrary number of
workers.

Coordinator

Global

Batch Batch
Actions Results

Figure 3.3: The synchronous architecture used by the A2C algorithm. A single coordi-
nator updates the network via exploration of a set of parallel environments.



Chapter 4

Simulation Environment

The simulation environment introduced by (L1 et al. (2019) consists of moving UAVs
and users, and models the network connectivity between these entities. The UAVs
are situated at a fixed distance of 10m above the users. At each time-step the UAVs
and users can move in one of four cardinal directions or remain where they are. All
actors in the environment execute their actions simultaneously: in a single timestep
there is no ordering of the actions taken by the different actors. The UAVs take actions
based on the policy learned by a reinforcement learning algorithm while the users move
according to a defined mobility model.

100
Il Base-Station
Il User
80
— 60
-
> 40
[ ] [ ]
20
0
0 20 40 60 80 100

X [m]

Figure 4.1: A snapshot of the UAV environment with 4 base stations and 4 user-groups
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4.1 State Space

The state space is a representation of the environment that the reinforcement learning
algorithm receives at each time-step. Typically, state spaces with higher dimensionality
convey more information about the environment to the algorithm at the cost of longer
training times. In this paper the state space was chosen in an attempt to maximize
spatial information whilst preserving training efficiency.

The state space consists of two occupancy grids which represent the locations of the
base stations and users respectively. Each occupancy grid is an N by N matrix where
N represents the length and width of the arena. Each cell in the grid has a value of 1
if it is occupied by a UAV or user and a value of O if it is empty. By providing both
UAV and user locations in a grid structure, the spatial relationships between states are
explicitly captured.

The relationship between the size of the arena and the state space result in a perfor-
mance bottleneck. Increasing the arena size, results in quadratic growth in the state
space, which in turn increases the number of parameters in the neural network. A
larger weight space requires more training time to find solutions to the task. For this
reason the arena size was constrained to 100m.

4.2 Action Space

The actions of the UAVs are chosen from the four cardinal directions and the option
to remain stationary. These movements are conducive to the grid nature of the envi-
ronment. Given 5 possible movements for each UAV, the action space is given by 5"
where 7 is the number of UAVs. The exponential growth of the action space with the
number of UAVs necessitates a limited number of UAVs for the learning task.

4.3 Network Model

The network is modeled on the communication between base stations “mounted” on
each UAV and users who act as clients to these base stations. The base stations imple-
ment a bare-bones LTE protocol to simplify the network model. The network assumes
an appropriate routing mechanism is implemented between the base stations. The core
measure of the quality of signals between a user and a base station is the down-link
signal to noise plus interference ratio (SINR). For a particular user, u, this quantity is

defined as:
P

SINR(u) = —— 4.1
) =57 (4.1
Where P is the power of the incoming signal, N is the noise of the signal and I is the

interference power of other base station signals.

The power terms in the above equation can be further decomposed into the transmit
power of the base station and the channel gain between the base station and the user.
The channel gain is calculated by taking a linear combination of the antenna gain,
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shadow fading and the path loss. For simplicity the path loss is chosen to be a free-
space model, assuming that there exists a line-of-sight, obstacle-free path between the
user and the base stations. The path loss L is computed following the 3GPP cellular
model for urban scenarios:

L=o+Blog(D) 4.2)

Where D represents the Euclidean distance between the base station and the user, and
o and P represent standard coefficients.

4.4 User Mobility Model

The users move according to a defined mobility model. First introduced by [Hong et al.
(1999), the Reference Point Group Mobility model (RPGM) allows for situations such
as large-scale disaster recovery to be modelled accurately. This model clusters users
together in groups with each user moving around their respective groups’ center-point
(or reference). Every time-step each user is moved by the summation of the direction
vector of the group reference and a random motion vector. This leads to random mo-
tion within groups, with the groups themselves moving cohesively. RPGM is a more
structured mobility model than simple random-walk type models and allows for a more
realistic way to test the deployment of ad hoc networks, such as the network created
by the UAV base stations (Hong et al.,|1999).

The number of user “groups” are made equal to the number of UAVs in the environ-
ment. This choice allows for a one-to-one mapping between UAVs and user groups,
hopefully eliciting maximum coverage scenarios where each UAV learns to situate
itself at a unique group’s center-point. Group way-points are generated randomly, re-
sulting in unique movement of the user groups across episodes.






Chapter 5

Methodology

The first step towards the analysis of reinforcement learning on the UAV domain was
the implementation of the relevant algorithms. Surveying the current state-of-the-art,
the tools created by OpenAl are well tested and provide useful functionality for the
development and testing of learning algorithms. OpenAl, a research organization fo-
cusing on artificial intelligence, provides a suite of open-source learning environments
and reference implementations of reinforcement learning algorithms. Their learning
environments are packaged under a tool called “gym”, which exposes a standardized
API to various domains and has become increasingly popular in the reinforcement
learning community.

OpenAlT’s algorithm implementations depend on the first version of Google’s popu-
lar machine learning framework Tensorflow (Abadi et al., 2015). Tensorflow 1 makes
use of a declarative programming API, where computational operations are declared
up-front and invoked implicitly later in the program. This creates a large barrier for
those unfamiliar with the framework, as the execution logic does not flow in a func-
tional manner, as in traditional programs. To remedy this, Google recently released
Tensorflow 2, a functional version of Tensorflow. By utilising Tensorflow 2, the im-
plementations presented in this paper aim to achieve higher clarity for those new to
reinforcement learning while maintaining feature parity with OpenAl’s implementa-
tions.

5.1 Algorithm Implementation

A3C, A2C and ADQN were all implemented using Tensorflow 2 (Abadi et al., 2015).
Tensorflow 2 provides a high level API called Keras which allows neural network ar-
chitectures to be constructed layer-by-layer in a readable manner. The core elements of
the algorithm implementations were based on the implementations provided by Ope-
nAl (Dhariwal et al., 2017)) and a tutorial on reinforcement learning with Tensorflow 2
released on Tensorflow’s blog (Yuan, 2018). A results-oriented approach was followed,
whereby the implementations were tested on a simple “gym” environment to establish
confidence in their functionality. The gym environment chosen was “CartPole-v1”,
which involves balancing a pole on a cart (see Figure [5.1)). This environment was cho-

23



24 Chapter 5. Methodology

Figure 5.1: The 'CartPole-v1’ environment. The agent tries to keep the pole above the
horizontal line by applying force to either end of the cart.

sen due to its simplicity, which allowed for fast training and testing, and similarity to
the target domain with respect to discrete action and state spaces.

5.2 Network Architecture

A multi-layer-perceptron (MLP) architecture was chosen for the neural networks due
to the ease of implementation, and the low granularity of the input: the state spaces
encode high-level features of the environment. For the actor-critic algorithms the actor
and critic networks consist of two hidden layers each with 100 nodes. This architecture
differs from many other reference implementations where the actor and critic share a
number of hidden layers. This is particularly relevant for networks with convolutional
layers, where the first few layers extract the same set of simple features such as basic
shapes. For the g-learning architecture a single MLP with two hidden layers with 100
nodes is used. The parameters used for the algorithms are described in Table [5.1]

H Parameter ‘ Value H
Learning Rate 0.0001
Discount Factor 09
Number of Workers 16
Gradient Normalisation Value 1.0
Network Update Frequency 50
Number Training Episodes 1000

Table 5.1: Learning Parameters

5.3 Reward Function

Designing a reward function for the UAV environment is a non-trivial task. A basic re-
ward function could constitute assigning a reward of 1 for every connected user, where
a user is connected if it has an SINR value above some threshold. However, trivial re-
ward functions like this are not necessarily conducive to algorithm convergence, as the
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Figure 5.2: Comparison of a step-wise and a smooth reward function. The step-wise
reward increases when a user becomes connected while the smooth reward function
increases based on the SINR of the user.

agents do not receive rewards consistently for moving towards the goal. For example,
with this reward function, if a UAV moves closer to a user but fails to raise its SINR
above the threshold, the reward would not increase, and thus the agent would not be
aware that it took an appropriate action. The quality of a reward function to adequately
reflect movement towards the end goal heavily relates to its shape.

Typically, a smooth reward function is preferred to a step-wise one, as the reward
signal to the agent is clearer. Considering the simple scenario described above, with
a single UAV moving towards one user, we can visualise a continuous and step-wise
reward. Figure[5.2]shows the hypothetical shape of the step-wise reward function com-
pared to a smoother reward function which reflects the SINR of the user directly.

With these considerations in mind, the simplest reward function with an appropriate
shape was chosen. This manifested as an extension of the smooth reward function
above, for an arbitrary number of users and base stations. The reward given to the
reinforcement learning agent is equal to the mean SINR of all the users in the environ-
ment. It can be reasoned that this reward function allows for the optimal behaviour of
the base stations (each base station following a different cluster of users) as clustering
of base stations would be reduced by their interference, which would in turn reduce
the SINR of nearby users. The reward function R is formulated as follows:

_ Yueu SINR(w)

R
Ul

S.D

Where U is the set of users and SINR is a function which returns the SINR value for
the given user.
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5.4 Training

Training the reinforcement learning algorithms involved running 1000 episodes, each
consisting of 200 time-steps, with 10 random seeds. The set of random seeds was fixed
for the various algorithms to allow for appropriate performance comparisons. Across
the training episodes 10 checkpoints of model states were saved to allow adequate
testing of the learning behaviour. All algorithms were trained on an AMD Ryzen 5
3600 processor with 12 logical cores.

To measure training performance a moving average reward R was calculated at each
episode:
R =10.99 x R+0.01 x Episodic Reward 5.2)

This provides a measure of training convergence, as the average episodic reward will
increase as the algorithm converges to solving the task.

A greedy heuristic approach to solving the problem presented by [Li et al. (2019) is
used as a baseline for comparing the performance of the other algorithms. At each step
this baseline moves all UAVs in the direction which maximizes the mean SINR of all
the users in the next time-step. It is considered a greedy baseline to solving the task as
it only considers the best possible action for the next time-step.

5.5 Testing

To test the learned behaviour of the algorithms, the 10 checkpoint models for each
random seed were applied to a unique UAV environment. This testing environment
contains the same number of users as in training, but is constructed with a single user
movement trace (across tests the users will move identically). This movement trace is
necessary to ensure fair comparisons across the algorithms. For the ADQN algorithm,
random actions were not taken, forcing the agent to take the greedy action (the action
it deems best) in each time-step.

The key evaluation metrics for testing are the episodic reward and the cumulative dis-
tribution of the SINR across the episode. The cumulative distribution metric allows
the median SINR experienced by the users to be identified while the reward gives a
measure of the mean SINR.
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Performance Evaluation

6.1 Greedy Baseline

As the greedy baseline is a heuristic approach, it does not undergo a training process
like the reinforcement learning algorithms. Testing the approach on the UAV environ-
ment produced baseline measures for the cumulative distribution function (CDF) and
mean SINR of the users. The baseline was run 10 times on the testing environment,
and the results were averaged across these 10 runs, to give a confidence interval to the
results. These results are shown in Figure [6.1]
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Figure 6.1: Baseline measures of SINR of users with greedy baseline.

6.2 A3C

The asynchronous actor-critic algorithm (A3C) was implemented on the UAV domain
by Li et al.| (2019). The implementation of this algorithm was re-written in Tensorflow
2 to investigate any performance benefits in moving to the newer framework. Ini-
tially, the algorithm was tested for convergence on the CartPole task and, once this was
achieved, applied to the UAV environment.

27
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6.2.1 CartPole

The algorithm demonstrated convergence on the CartPole task, achieving a peak av-
erage score of 230 after 5000 training episodes. The CartPole task is defined as
“solved” when an agent achieves an average reward of 195 over 100 consecutive tri-
als (Brockman et al.| 2016). Looking at the test performance curves we can see that
this is achieved for all random seeds after 2500 training episodes. After 2500 training
episodes the average testing reward reaches 454 and the minimum reward across test-
ing episodes is 202. At peak performance 7.37% of testing episodes reach a score of
498, the maximum score for the CartPole setup, demonstrating that the algorithm does
not fully master the task.
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(a) Moving average reward of A3C during training, aggregated over 10 random seeds.
Shaded area represents one standard deviation.
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(b) Average reward aggregated over 10 random seeds and minimum reward during
testing. Minimum reward showcases that the algorithm solves the task after 2500
training episodes.

Figure 6.2: Moving average reward and testing performance of A3C on cartpole task.
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The algorithm showcases degraded performance after 2500 training episodes, dropping
to an average reward of 200 per episode. This decrease in performance most probably
stems from a key implementation detail of A3C: as the agents operate asynchronously,
at any given time the parameters of the actor and critic networks across agents will
differ. This manifests in a reduction in the information shared across the agents, and
thus a potential decrease in the learning robustness. Learning robustness is especially
important when the agent reaches a high level of performance as robustness prevents
unstable updates to the policy and value networks which would result in sub-optimal
behaviour (Nikishin et al., 2018]). The exploration of the A2C algorithm will test this
robustness hypothesis by removing the asynchronous agents from the equation.

6.2.2 UAV Environment

Applying A3C to the UAV environment, the training convergence of the older and
newer implementations was investigated. As can be seen by Figure [6.3] the moving
average training reward converges to approximately 39 and 36 for the old and new
implementations respectively. While the newer version of A3C converges to a lower
mean reward it remains within a single standard deviation of the older implementations
mean reward. This provides weight to the claim that the average rewards between the
two implementations remain similar, as would be expected for functionally identical
algorithms.
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Figure 6.3: Moving average training reward for old A3C algorithm implemented in [Li
et al. (2019) and an updated A3C implementation in Tensorflow 2.

Investigating the results of the two algorithms on the test environment, the algorithms
report similar performance metrics. In Figure [0.4] the cumulative distribution function
of the SINR across the test episode shows that the updated A3C algorithm reports a
1.35 dB increase in median SINR. However, the significance of this increase is again
diminished by the fact that both functions stay within one standard deviation of each
other. The reward across testing displayed in Figure [6.5] shows comparable perfor-
mance across the algorithms. Both converge to a mean reward of around O db across
the 2000 timesteps.
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Figure 6.4: Median SINR testing performance of A3C algorithms on UAV task.
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Figure 6.5: Mean SINR testing performance of A3C algorithms on UAV task.

6.3 A2C

Removing the asynchronous aspects of the A3C algorithm is referred to as advantage
actor-critic (A2C). It has been shown empirically to perform equally or better than A3C
and allows for large network updates to be processed on the GPU, further decreasing
training times (Dhariwal et al., 2017). The A2C algorithm was trained on the CPU
for both CartPole and UAV tasks due to their low space complexities and to provide a
more fair comparison for the increased robustness hypothesised from the A3C results.

6.3.1 CartPole

As demonstrated in Figure[6.6) A2C converges to solving the task after 4500 episodes
of training. At convergence the algorithm reaches an average testing reward of 480
with a minimum score of 252 across all testing episodes. A2C showcases mastery of
the task, reaching the maximum score of 498 points across 84.3% of test episodes.
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(a) Moving average reward of A2C during training, aggregated over 10 random seeds.
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(b) Average reward aggregated over 10 random seeds and minimum reward during
testing. Minimum reward showcases that the algorithm solves the task after 4500
training episodes.

Figure 6.6: Moving average reward and testing performance of A2C on cartpole task.

6.3.2 UAV Environment

Training on the UAV environment produced the moving average reward curve shown
in Figure[6.7] The moving average mirrors the training curves of the A3C algorithms
closely, even down to the standard deviation of the reward. Unlike in the CartPole
environment, the A2C algorithm does not produce a more stable convergence curve
than A3C which is likely due to the increased complexity of the environment. Plotting
the CDF of the SINR experienced by all users, the median SINR reaches 4.40 and the
mean SINR curves show stagnation at 0.10 dB (see Figure [6.8]
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Figure 6.7: Moving average reward of A2C on the UAV environment.
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Figure 6.8: Evaluation metrics of SINR of users with the A2C algorithm.

6.4 ADOQN

The asynchronous deep Q-network (ADQN) algorithm presents a fundamentally dif-
ferent approach to learning compared to the actor-critic methods described above. Uti-
lizing a single network to represent the Q function, this algorithm allows for off-policy
learning to be conducted. As the off-policy approach attempts to learn the optimal pol-
icy directly, it represents an important benchmark to compare the previous actor-critic
algorithms to.

6.4.1 CartPole

Displayed in Figure the ADQN algorithm solves the task after training for 4500
episodes. The mean average testing reward after convergence reaches 461 with a min-
imum score of 233. The best performing checkpoint of the model achieves the maxi-
mum score of 498 in 74.8% of episodes.
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(b) Average reward aggregated over 10 random seeds and minimum reward during
testing. Minimum reward showcases that the algorithm solves the task after 4500
training episodes.

Figure 6.9: Moving average reward and testing performance of ADQN on cartpole task.

The inherent instability of the ADQN training is demonstrated with the moving average
training reward. Unlike the other algorithms explored, ADQN does not iterate on
a policy, instead taking the action it deems best at any given time-step or taking a
random action to explore. This greedy behaviour means that small changes to the
values assigned to each state can lead to large changes in the agent’s actions, resulting
in a non-monotonic training reward curve.

6.4.2 UAV Environment

As seen in Figure[6.10]the ADQN algorithm reports a large drop in the moving average
reward across 1000 episodes of training to around 25. This behaviour indicates a degra-
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dation in performance to a local minimum, from which the algorithm cannot explore
enough to improve. This would typically be accompanied by low testing performance.
However, as shown in Figure [6.11] the ADQN algorithm reports a median SINR value
of 6.63 dB and converges to a testing reward of 0.15 dB. This testing reward is the
highest achieved reward across the explored algorithms.
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Figure 6.10: Moving average reward of ADQN on the UAV environment.
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Figure 6.11: Evaluation metrics of SINR of users with the ADQN algorithm.
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6.5 Evaluation

A key takeaway from the results of the explored algorithms is that the training reward
does not provide a useful indication of the performance on the test environment. The
ADQN algorithm converges to a mean reward of 25 compared to the 35+ of the other
algorithms, while still achieving a higher median and mean SINR on the test environ-
ment. The discrepancy in training and testing environment performance can be as-
cribed to the change in behaviour of the ADQN algorithm. While training, the ADQN
algorithm takes random actions with a certain probability € enabling it to explore the
environment. Once the agent begins to converge to useful behaviour, these random
actions can severely disrupt its policy leading to reduced average rewards. During test-
ing, the ADQN algorithm uses the greedy policy: always taking the action it deems
best from each state. As there are no random actions taken, the testing reward gives a
better indication of the performance of the learned policy.

The testing performance difference between the A2C and A3C algorithms is also not
borne out by the training reward. The training reward of A2C sits between the two
versions of the A3C algorithm and has a similar convergence shape. However, the me-
dian testing SINR of A2C exceeds that of the best performing A3C algorithm by 2.25
dB. One difference between the algorithms that could lead to divergent behaviour is
the ability for workers in A3C to overwrite each other’s behaviour if updates are not
sparse (Recht et al.l 2011). However, if these disruptive updates were occurring we
would expect to see an impact on the training reward which is not demonstrated by
the data. With this in mind, it is likely that the gain in A2C testing performance is a
result of the workers in the algorithm always having access to the shared experience
of all other workers. While in the A3C algorithm, workers could be updating the net-
work with gradients produced by stale weights, the network weights in A2C are fresh
throughout training.

Comparing the CDF of all algorithms in Figure there are a number of key take-
aways. Firstly, all reinforcement learning algorithms significantly outperform the greedy
baseline. This was an expected result due to the limited look-ahead and robustness of
the baseline. As expected, the CDF curves for the A3C algorithms are closely related.
Finally, there are significant median SINR increases for both the A2C and the ADQN
algorithm. They achieve an increased median SINR of 7.40 and 9.63 respectively com-
pared to the greedy baseline. If user outages were incurred at an SINR of 0 dB then
the greedy baseline would incur outages from 80% of users while ADQN would incur
outages from only 18% of users.

By inspecting the training times across the algorithms, the run-time complexity of
training can be visualised. The training times are displayed in Figure [6.13] As shown
by the times reported for the A3C implementations, upgrading to Tensorflow 2 reduced
training times by an average of 5 minutes (8.85%). The ADQN algorithm is the slowest
to train of the four algorithms by more than 10 minutes. This is due to the increased
rate of network updates during the algorithm’s execution. As stated in Chapter [3]
to ensure stability in training, the target Q network must be updated with the main
networks weights regularly. This occurs more frequently than the network updates in
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A3C, causing the ADQN algorithm to spend more time copying network parameters.

Comparing the A3C and ADQN results to A2C, it is clear that the synchronous al-
gorithm requires less time to train. This can be attributed to the reduced number of
gradient calculations required by the A2C algorithm: A2C can gather a batch of expe-
riences and calculate a single gradient update from this batch, while the asynchronous
algorithms have to calculate separate gradients for each asynchronous worker.

Finally, the model complexity of the various algorithms is detailed in Table As
shown, the ADQN algorithm has the highest model complexity when considering the
static model. However, the model complexity during training demonstrates the in-
creased complexity incurred by the asynchronous algorithms. This is due to the local
copies of the neural network required by each worker in A3C and ADQN. The model
complexity is loosely coupled to the training time complexity as an increased number
of parameters often translates to slower neural network updates.
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Figure 6.12: Comparison of users’ SINR during testing across all algorithms.

H Algorithm ‘ Model Parameters (million) ‘ Parameters During Training (million) H

A3C 20.2 323.3
A2C 20.2 20.2
ADQN 25.6 409

Table 6.1: Algorithms and the number of learned parameters in their models. “Parame-
ters During Training” refers to the number of parameters in memory during training.
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Chapter 7

Conclusion

This paper explored the application of a number of deep reinforcement learning algo-
rithms to a UAV control task within an environment where UAV base stations provide
network coverage to users. By implementing an optimized actor critic algorithm (A2C)
and exploring a popular off-policy algorithm (ADQN) this paper utilized a number of
reinforcement learning methods to solve the task. The ADQN algorithm achieves the
highest median SINR value during testing, surpassing a greedy baseline by over 9 dB
and consequently achieving a lower user outage rate of 18% compared to 80% for the
baseline with an appropriate threshold.

The reinforcement learning algorithm A2C demonstrates superior testing performance
compared to the A3C algorithm. With an increased median SINR of 3.2 dB, the A2C
algorithm showcases the marginal benefits of synchronous updates on performance.
However, while both actor critic methods outperform the greedy baseline they perform
significantly worse than the ADQN algorithm. The success of the Q-learning based
approach suggests that explicit exploration of the environment can lead to better per-
formance on the task. Additionally, the superiority of the off-policy approach suggests
this family of algorithms may perform more robustly on non-Markovian environments.

Finally, the algorithms explored in this paper were all open-sourced and bench-marked
against the popular “gym” environment (Brockman et al., 2016). These reference im-
plementations will hopefully facilitate further research in the area and allow the oper-
ational details of the algorithms to be more clearly scrutinized.

7.1  Future work

There are many avenues for future exploration on the UAV environment. To provide
a more realistic simulation, customized user mobility models based on data of user
movement in different scenarios could be explored. Additionally, the channel model
which assumes a free-space path loss could be extended to cover outdoor to indoor
penetration loss as would be common for urban environments (Haneda et al., [2016).
Finally, the arena size of the environment could be increased to better represent the

39
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scale of environments where UAV base stations would be employed.

Further work to improve the performance of the explored algorithms could include
optimizing the neural network architecture. As the state space represents a rough grid
map of the environment, a convolutional neural network (CNN) architecture may per-
form better than the multi-layer perceptrons employed in this paper. CNNs have been
shown to outperform MLPs on image recognition tasks due to their success at repre-
senting spatial dependencies in the input (LeCun et al., | 1999).

To decrease algorithm training times further, the algorithm implementations would
benefit from utilization of multi-core processing. One of the key trade-offs of Python’s
threading library is that while it provides a clear API for parallel processing, its threads
are confined to a single core. Due to the rise in computational cores in commodity
CPUs, utilizing multi-core performance would present a large increase in maximum
training speed. This could be achieved with Python’s multiprocessing library, or by
translating the code to another language which offers multi-core parallel processing
such as Go (Donovan and Kernighan, 2015]), with both solutions requiring careful man-
agement of shared memory.

To exploit the multi-agent aspects of the UAV environment, an approach similar to
joint action learners (JAL) could be taken. JAL is a multi-agent learning approach
where each agent models the behaviour of other agents in the environment (Claus and
Boutilier, [1998). By modelling the movement of the users, the learning agent could
approximate the motion model being used, thus increasing the Markovian properties
of the learning process.
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Algorithm 1 Asynchronous advantage actor-critic implementation for worker thread

Require: Global shared actor network with weights 6¢
Require: Global shared critic network with weights 6°¢
Require: Global shared episode counter T
Require: Max number of episodes Tyax
Require: Network update frequency T, pqare
Require: Local actor network with weights 6f
Require: Local critic network with weights 67
Require: Local step countert < 1
while T < T, do
Reset gradients: d6“ <— 0 and d6° <— 0
Update local actor and critic networks 67 <— 6 and 67 < 6°
Lstart <=1
Perceive current state s;
while s; is not terminal and ¢ — ty4rr # Typdare dO
Take action g, according to policy w(a|s;8f)
Receive reward r; and new state s,
t<—1t+1
T<+T+1
end while
R<+0
if 5,11 is non-terminal then
R < V(s:,65)
end if
foric{t—1,...,t4q} do
R <+ ri+7YR
Accumulate actor gradients: d8 <— d0 + Vgalognt(a;si; 07 ) (R — V (5 07)

_ .A¢))2
Accumulate critic gradients: d0¢ <— d0¢ + w
!

end for
Asynchronous update of network 8¢ using d6“ and 6 using d6°
end while
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Algorithm 2 Advantage actor-critic implementation for coordinator thread

Require:
Require:
Require:
Require:
Require:
Require:

Actor network with weights 6°
Critic network with weights 6¢
Episode counter T

Max number of episodes Ty
Network update frequency Typgare
Number of Parallel Environments P

while T < T, do
Reset gradients: d6“ <— 0 and d6° <— 0
for pc Pdo

t< pit

Istart <— D-Lstart

Perceive current state s;

while s; is not terminal and ¢ — 54t # Typdare dO
Take action a; according to policy w(a|s;;8f)
Receive reward r; and new state s,
tt+1
T+T+1

end while

if 5,11 is non-terminal then
R <V (s;,6)

end if

if 5, is terminal then
R<+0
p.reset-environment()

end if

foric {r—1,....t44:} do
R <+ ri+7YR
Accumulate actor grads: d8? <— d6“ + Vgalogm(a;|si; 04) (R — V (si;0°)
Accumulate critic grads: d6° <— d0¢ + W

end for

Update of network 6 using 46 and 6¢ using d6°

end for
end while
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Algorithm 3 Asynchronous Q-learning implementation for worker thread

Require: Global shared main network with weights 0
Require: Global shared target network with weights ©'
Require: Global shared episode counter T
Require: Max number of episodes Ty,
Require: Target network update frequency T,arger
Require: Main network update frequency Typgare
Initialize network gradients d0 < 0
Perceive current state s;
while T < T, do
Take action a; with e-greedy policy using Q(s;,a;;0)
Receive new state s;11 and reward r; |
YTt
if 5;4 1 is non-terminal then

y<—y+'YfanafiQ(Sz+1,a;+1;9t) (A.1)
1+

end if )
Accumulate gradients: d6 < d0 + W

if T mod T;4rger == 0 then
Update target network 6’ < 6

end if

if 7" mod 7,44 == 0 then
Asynchronous update of network 6 using gradients d0
Zero gradients d6 < 0

end if

T+T+1

end while
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